Chongyi Zheng

prof_pic.jpg

I am a PhD student in Computer Science at Princeton University advised by Benjamin Eysenbach. I am interested in developing reinforcement learning (RL) algorithms that enable long-horizon reasoning using probabilistic inference. I completed my M.S. from Carnegie Mellon University advised by Ruslan Salakhutdinov. I have had the great opportunity to collaborate with Sergey Levine and work with Xiaolong Wang.

preprints

2024

  1. csf.jpg
    Can a MISL Fly? Analysis and Ingredients for Mutual Information Skill Learning
    Chongyi Zheng*, Jens Tuyls*, Joanne Peng, and Benjamin Eysenbach
    arXiv preprint arXiv:2412.08021, 2024

publications

2024

  1. cmd.jpg
    Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making
    Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach
    International Conference on Machine Learning, 2024
  2. gai.gif
    Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior
    Ruihan Yang*, Zhuoqun Chen*, Jianhan Ma*, Chongyi Zheng*, Yiyu Chen, Quan Nguyen, and Xiaolong Wang
    Conference on Robot Learning, 2024
  3. td_infonce.gif
    Contrastive Difference Predictive Coding
    Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach
    International Conference on Learning Representations, 2024
  4. stable_contrastive_rl.gif
    Stabilizing Contrastive RL: Techniques for Offline Goal Reaching
    Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov, and Sergey Levine
    International Conference on Learning Representations (Spotlight Presentation < 5%), 2024

2023

  1. bridge_data_v2.png
    BridgeData V2: A Dataset for Robot Learning at Scale
    Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao, Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and Sergey Levine
    In Conference on Robot Learning, 2023

2021

  1. pasf.png
    Learning Domain Invariant Representations in Goal-conditioned Block MDPs
    Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael Zhang, and Jimmy Ba
    Advances in Neural Information Processing Systems, 2021

2020

  1. ndq_mmm.png
    Learning Nearly Decomposable Value Functions Via Communication Minimization
    Tonghan Wang*, Jianhao Wang*, Chongyi Zheng, and Chongjie Zhang
    In International Conference on Learning Representations, 2020